3.2 Introduction to Polynomial Functions

Polynomial Function

$f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}$
$a_{n}, a_{n-1}, \ldots, a_{2}, a_{1}, a_{0} \Longrightarrow$ real numbers
$n \Rightarrow$ a whole number
The degree of $f(x)$ is the highest exponent " n "
The leading coefficient, a_{n}, is the coefficient of the variable to the highest power.

When graphed, polynomial functions of degree 2 or higher have graphs that are smooth and continuous. There are no sharp corners or no breaks (no gaps), and can be drawn without lifting your pencil.

End Behavior of Polynomial Functions

As x approaches ∞ or $-\infty, f$ eventually becomes forever increasing or decreasing.

The Leading Term (Coefficient) Test

$a_{n}=$ the leading coefficient
$n=$ the degree of the polynomial
\(\left.$$
\begin{array}{|c|c|c|}\hline & a_{n}>0 & a_{n}<0 \\
\hline n \text { Even Degree } & \begin{array}{c}\text { Left End: up } \\
\text { Right End: up }\end{array}
$$ \& Left End: down

Right End: down\end{array}\right]\)| Left End: up |
| :---: |
| n Odd Degree |
| Left End: down |
| Right End: up |\quad Right End: down | |
| :---: |

Ex. Use the Leading Term Test to determine the end behavior of the following:
(a) $f(x)=-2 x^{4}+2 x^{3}$
(b) $f(x)=\frac{7}{6} x(x-9)^{3}(x+4)^{2}(3 x-5)$

* Zeros of Polynomial Functions

Zeros of Polynomial: the values of x for which $f(x)=0$

Solutions $\Leftrightarrow x$-values $\Leftrightarrow x$-intercepts \Leftrightarrow Zeros \Leftrightarrow Roots

* Multiplicities of Zeros

After factoring the equation for the polynomial function f, if the same factor $(x-r)$ occurs k times, we call r a zero with multiplicity \boldsymbol{k}.

Ex. $(x-5)^{2}$
The zero is 5 with multiplicity 2 .
Ex. $(x+4)^{3}$
The zero is \qquad with multiplicity \qquad .

Even Multiplicity

If the multiplicity of a zero is an EVEN number, the graph will TOUCH the x-axis. Odd Multiplicity
If the multiplicity of a zero is an ODD number, the graph will CROSS the x-axis.

Strategy for Graphing Polynomial Functions

1.) Find x-intercepts: mark all the zeros on the x-axis.
2.) Determine the end behavior: use the end behavior on the left-most and the right-most x-axis
3.) Determine the multiplicity: for each x-intercept, use TOUCH or CROSS to fill in the graph.
4.) Find the y-intercept: compute $f(0)$.

Ex. Use knowledge of end behavior and multiplicity of zero to sketch the function:
$f(x)=-2 x^{3}(x+2)^{2}(x+1)$
Degree of the Poly.: \qquad
Leading Coeff.: \qquad
y-intercept: \qquad

Zero	Multiplicity	End Behavior

Ex. Use knowledge of end behavior and multiplicity of zero to sketch the function:
$f(x)=x^{3}+2 x^{2}-x-2$
Degree of the Poly.: \qquad
Leading Coeff.: \qquad
y-intercept: \qquad

Zero	Multiplicity	End Behavior

If f is a polynomial function of degree n, then the graph of f has at most $n-1$ turning points.
\rightarrow Use the fact that the maximum number of turning points of the graph is $n-1$ to check whether it is drawn correctly.

Ex. Determine if the graph can represent a polynomial function. If so, assume that the end behavior and all turning points are represented in the graph.
(a) Determine the minimum degree of the polynomial based on the number of turning points.
(b) Determine whether the leading coefficient is positive or negative based on the end behavior and whether the degree of the polynomial is odd or even.
(c) Approximate the real zeros of the function, and determine if their multiplicities are even or odd.

